
Implement Generator Functions in C
by Abusing Multi-Threading

Rushi Shah

2 August 2017

In a language like Python you can use the yield keyword in a function to lazily generate
one value in a stream of values at a time. This will let you pass the control flow back and
forth from your main method to your iterator and only perform computations in the iterator
when they are requested by the main method. This is pretty neat, and in my Computer
Architecture class one of our projects was to implement this behavior in C.

Implementing something like this is more difficult than it may sound: you not only need
to pass the control flow back and forth, but you also need to maintain the state of the
program for both functions. On an assembly level this means keeping track of the registers
and the stack for each iterator.

1 Possible Approaches

When I first started approaching this problem and discussing it with my peers it seemed
like the right answer was the setjmp/longjmp methods. These would let us set a jump
when before calling the iterator, and long jump back when we yielded a value. However,
one immediate problem with this is that we needed to be able to keep track of an arbitrary
amount of iterators which could be nested just like normal function calls. As a result we
would need something like a stack of jumps, but that isn’t what the setjmp/longjmp methods
are really cut out for.

The alternative was manually flipping stacks for execution (in assembly). But since at
this point assembly was still rather intimidating I was looking for a solution that would
abstract it all away for me.

2 The Thread Tactic

At the end of the day this program was hard to write because maintaining state among the
different functions is a pain. But switching back and forth between the different functions
sounded to me a lot like something I had briefly read about: context-switching. This is the
mechanism with which threads maintain their state and the OS can wake/sleep threads and
have them pick up where they left off before they were paused.

1



Therefore my original idea was to implement the iterators with threads. I would spawn
a new thread for each iterator method, and when a new value was requested I would wake
up that thread. It would run until it had a value, put that value in a shared variable, and
then go back to sleep. At this point the main thread would wake up, retreive the value and
continue on its merry way. In other words, threads would manage the state automatically
for me, granted I could get the right thread to run the right amount of code at the right
time.

3 How I did it

It turns out that is not exactly how threads work. You don’t just put them to sleep and wake
them up like that. Instead, they are all trying to run all the time, but very smart people
have come up with clever ways to make sure that if they need to wait on access to some
shared variable they can wait on it. These threads have mutually exclusive access to these
variables. As soon as one thread gets access to a variable it will “lock” it and everything it
executes will be atomic until it releases the lock

So after learning about how threads actually work I discovered a lot more complexity
I didn’t know the details of before. In light of my new information I decided to make a
mock-up of the assignment and prototype my solution. Before moving forward I wanted to
be able to at least pass control back and forth from the main thread to one side thread that
would take care of one iterator/function that could yield as often as needed.

So I had a global iterator struct that kept track of the side thread’s pid, a mutex, a
conditional value, the newest return value for the iterator’s function, and a boolean to keep
track of whether or not the function had already yieled it’s latest value. In other words:

struct Iterator{

pthread_t tid;

pthread_mutex_t lock;

pthread_cond_t cv;

long return_value;

int yielded;

};

The main thread will start running and at some point call the lazy function with the
next method. The next method sets yielded to false which means the lazy function still
needs to produce a value. As soon as yielded is false the lazy function gets unblocked and
its code starts running. It keeps running until it calls the yield method, which will store the
return value into the returnvalue field and set yielded to true. The main thread will see
that yielded is true so it will be ready to look in that field and find the value it was looking
for. Now, since yielded is true it won’t be set to false again until the main thread calls next
again and starts the cycle over again.

To formalize that paragraph lets take a look at the next and yield methods. Assume you
have some global iterator i for some lazy function f that will get called from a main method.
The function will call yield when it has a new value, and the main method will call next to
request a new value.

2



3.1 Yield

void yield(long v){

// if we call yield from f that means we have a new value for the main method

i->yielded = 1; // in other words, we have yielded a value

pthread_cond_signal(&(i->cv)); // signal that we are ready

i->return_value = v; // set the return value

while((i->yielded)){ // wait until we are looking for the next value

// don’t give up lock until while statement is ready

pthread_cond_wait(&(i->cv), &(i->lock));

}

// end of while block means we are looking for next value

// so to get it we just return back to f

return;

}

3.2 Next

long next(){

// if we call next that means our old value is outdated and we want the next one

i->yielded = 0; // in other words the iterator has not yielded a value

pthread_cond_signal(&(i->cv)); // signal that we’re looking for a new value

while(!(i->yielded)){ // wait until we get a response value

// don’t give up the lock until the while statement is ready

pthread_cond_wait(&(i->cv), &(i->lock));

}

// end of while block means we have got a new value in the pipeline

i->yielded = 1; // indicate that the iterator has now yielded a new value

pthread_cond_signal(&(i->cv)); // signal that we have the new value

return i->return_value; // look in the correct spot for the return value

}

3.3 Tying it together

Now in the main method we can call next every so often which will make f give you values
here and there by calling yield. The cool thing here is the atomic operations in the while
loop that keeps the side thread stuck in a loop until it is asked for the next value.

4 Why I didn’t finish implementing it

4.1 Arbitrary amounts of generators

My original implementation was sufficient for creating one iterator and bouncing control
back and forth between the two routines. However, extending it to an arbitrary amount
of threads would have been extremely difficult with the setup I had. Before I read about

3



threads I thought they were actually paused/resumed, but the way I ended up implementing
them was with a lock and I had manually coded the logic for that one lock. With my
implementation I would have needed to find a way to have a system of locks where each lock
corresponded to its own thread that corresponded to its own lazy function. Extending the
implementation from one thread/iterator/function combination to an arbitrary amount of
threads/iterators/functions combinations would have been far from trivial.

4.2 Pivot

Since the project was due in a week I needed an easier method of doing things. Turns out
we had already been provided with a method for switching the stacks which was the way we
were expected to go about doing things. Basically we had been provided with an assembly
method in the shell code without documentation that (if we squinted at it carefully enough)
would show us exactly how to switch back and forth between two function states. That way
was significantly easier and with a bit of help I finished the project up in a day, but it was
a fun little experiment to pioneer out on my own.

5 Conclusion

Blog posts are often just about successful side-projects. After all, it is so much more glam-
orous to talk about something you did that worked splendidly. But this post was about
something that failed. My idea didn’t really work out like I planned. I took a small, calcu-
lated risk and I didn’t succeed. Luckily there were no consequences, and everything actually
turned out great because I learned so much about the pthread library and general shared
resources in threads. After all, isn’t that what college is about? Striking it out on your own
in a setting that will catch you if you fall. Experiment!

Also, one of the reasons I chose to attend UT Austin (in the Turing Program) was
because I knew that Edsger Dijkstra used to be a professor here so I knew it must be a
serious research institution. I had always known Dijkstra as the guy who made Dijkstra’s
shortest path algorithm. But in researching for this project I learned that he was ALSO the
dude who invented semaphores. Without him, concurrent programming would be useless
because threads would not have an effective method for sharing resources and thus passing
data back and forth between threads. AI and distributed computing are the two buzz-words
nowadays, but they would be significantly further behind in their maturity if it wasn’t for
Dijkstra. This dude was a god among mortals and I respect the hell out of him.

4


	Possible Approaches
	The Thread Tactic
	How I did it
	Yield
	Next
	Tying it together

	Why I didn't finish implementing it
	Arbitrary amounts of generators
	Pivot

	Conclusion

