
Clearing Up Week 05 of CIS194

Rushi Shah

30 August 2015

So week five of CIS194 was a roller coaster! It really gets down with the nitty-gritty of
Haskell’s type system, which is great! But it can also be a bit confusing. I spent a really
long time on this week because I know how important it is. With that being said, a lot of
time is spent in the assignment pdf, but there isn’t THAT much material in the lecture. So
here is a bit of clarification on everything mostly just for my own edification. Any benefit
you derive is just a side-effect (hah, puns!).

1 Why I was confused

In my mind, there were four things and four pieces of syntax.
The four things:

• Types
• Type classes
• Types are instances of type classes
• Type synonyms are types that are exactly the same thing as other types

The four pieces of syntax (with examples from the lecture/assignment of CIS194 week
05):

• data Foo = F Int | G Char

• instance Eq Foo where

• class Eq a where

• type MyChar = Char

– The last one was not actually really a part of week 5, but it exists and was floating
around in my head, so I have included it.

2 How I cleared everything up

This is how things match up with their syntax (along with an explanation of the order things
generally are used):

1

http://www.seas.upenn.edu/~cis194/spring13/lectures/05-type-classes.html
http://www.seas.upenn.edu/~cis194/spring13/hw/05-type-classes.pdf


2.1 Data

• Define a type for the thing (MyMaybeInteger)

– Use the data syntax

data MyMaybeInteger = J Integer | N

--J for Just

--N for Nothing

2.2 Class

• Define a type class for what attributes the thing should have (MyEq)

– Use the class syntax

class MyEq a where

equal :: a -> a -> Bool

notEqual :: a -> a -> Bool

2.3 Instance

• After you have both of those, constrain the type to the type class

– Use the instance syntax

--Read as ‘‘an instance of MyEq is MyMaybeInteger’’

instance MyEq MyMaybeInteger where

equal N N = True

equal (J a) (J b) = a == b

equal _ _ = False

notEqual a b = not (equal a b)

2.4 Type

• Side note: if you want a type synonym, use the type syntax.

I guess what really got me mixed up was that to define a new type, you use the data

syntax, and the type syntax is just for type synonyms.

type MyInteger = Integer

3 Conclusion

So there you have it, a bit more clarification on Week 05 of CIS194. It will definitely take
me a while to wrap my head around Haskell’s type system, but I am excited because it
seems very mature and I can’t wait to discover its intricacies. To keep track of my efforts
on CIS194, check out the github repo and week 05 specifically.

2

https://github.com/2016rshah/CIS194
https://github.com/2016rshah/CIS194/tree/master/05


4 Post Note: newtype

It’s been a while since I originally wrote this post, but it has come to my attention that there
is actually one more thing (not explicitly mentioned in Week 05) that needs to be mentioned.
The newtype syntax is very similar to the data syntax.

The syntax and usage of newtypes is virtually identical to that of data decla-
rations - in fact, you can replace the newtype keyword with data and it’ll still
compile, indeed there’s even a good chance your program will still work. The
converse is not true, however - data can only be replaced with newtype if the
type has exactly one constructor with exactly one field inside it.

Basically “if you want to declare different type class instances for a particular type,
or want to make a type abstract, you can wrap it in a newtype”. A good example is using
newtype Email = Email String. The idea behind that is that your code is more expressive
and it adds a layer of typesafety (if a function is expecting an Email, you can’t pass it any
old string).

But according to this eloquent rant on what’s wrong with newtypes, that is only a false
sense of security. The gist of the article is that doing something like newtype Email = Email

String only makes you think your code is more safe because anybody (including you) can
wrap a string that is clearly not an email into the newtype and assume it is one which brings
you back to square one. The moral of the story is that although newtypes might help, and
are useful, they aren’t foolproof.

3

https://wiki.haskell.org/Newtype
http://degoes.net/articles/newtypes-suck/

	Why I was confused
	How I cleared everything up
	Data
	Class
	Instance
	Type

	Conclusion
	Post Note: newtype

