
Middle School Algebra with Applicative Functors

Rushi Shah

25 February 2016

What are applicative functors? And how are they actually useful? After reading the
Typeclassopedia, and Week 10’s lecture for CIS194, I started to formulate a way of explaining
it to myself in terms of basic algebra.

1 Factoring Review

Remember back in middle school when you learned the Distributive Property? To remind
you of a simple example:

2x + 2y = 2(x + y)

If you are dividing by (x + y), you can’t use the equation in its 2x + 2y form, you have
to factor it first, cancel the terms, and then wrap the result (which would just be 1 in this
case) by multiplying by two.

2x + 2y ∗ 1

x + y

2(x + y) ∗ 1

x + y

2 ∗ 1

If you think about it, 2 is acting like an applicative functor here. You have two terms that
are wrapped in a Two, and you want to apply a function on the wrapped values (ignoring
the wrapper) until the very end, at which point you slap the wrapper back on.

2 The Two Functor

To see what I mean, start by defining a type for Two. This type is clearly an instance of
Functor, fmap would just apply the function to whatever 2 is being multiplied by.

data Two a = Two a

deriving (Show, Eq)

instance Functor Two where

fmap g (Two z) = Two (g z)

1

https://wiki.haskell.org/Typeclassopedia
http://www.seas.upenn.edu/~cis194/spring13/lectures/10-applicative.html


3 The Two Applicative

It is also an instance of Applicative, where pure just multiplies by 2. The only other thing
we need to define is <*>. Given two separate terms which are both multiplied by two, we
would factor out the two and return the two other terms, right? The complete applicative
instance for Two is given below:

instance Applicative Two where

pure z = Two z

(Two x) <*> (Two y) = Two (x y)

Its important to note that the applicative instance does not actually do anything with x
and y. All it does is factor out the two. When the instance is actually used, x and y will be
passed to the function as arguments, and whoever is calling the function can decide how to
combine them.

4 Using the Two Applicative

Now, like you learned in middle school algebra, if you want to add two things that are both
multiplied by two, you can add them both together and just multiply the result by two. In
other words if you factor 2x + 2y, you’ll pull out the 2 (which our applicative does), and
then multiply that 2 by x+ y. This lets us make Two a partial instance of Num (if we enable
FlexibleInstances)

instance Num (Two String) where

(+) a b = (\x y -> (x ++ "+" ++ y)) ‘fmap‘ a <*> b

--Two "x" + Two "y" -> Two "x+y"

5 Using the Two Functor

To finish off the example I started earlier, let’s define a quick function for canceling two like
terms. This function, because it will presumably be used in other contexts other than just
for this contrived example, will operate on any term (even if they aren’t wrapped in a two).

cancel :: String -> String -> String

cancel t1 t2 = if t1 == t2

then "1"

else ("(" ++ t2 ++ ")/(" ++ t1 ++ ")")

But if we go to apply this function (cancel "x+y") to the results of our factorOutTwo

(Two "x") (Two "y"), we run into an issue because we expect a type of String but we
actually have something of type Two String. No worries, because before we could define
an Applicative instance, we had to define a Functor instance. Now, we can just fmap the
function like so:

2



fmap (cancel "x+y") ((Two "x") + (Two "y"))

--Two "1"

fmap (cancel "x") ((Two "x") + (Two "y"))

--Two "(x+y)/(x)"

6 Conclusion

Hopefully that clarified how Applicative Functors work with a familiar example. Even if it
didn’t, it helped me wrap my head around them so .

7 Update

I wrote this post a while ago and since then I’ve actually used the Applicative Functor a
couple of times in actual code. I wrote this when I was just learning what it was, and the
whole algebra analogy was actually really useful for me to wrap my head around the concept.
With that being said, the analogy is a bit of a stretch. You might notice this with the whole
fmap deal towards the end because intuitively you shouldn’t need to fmap into the Two
functor in normal algebra because multiplying an expression by two isn’t really the same as
wrapping it in a Functor. So perhaps the initial step of considering Two as a Functor was a
bit of a logical leap. Sorry about that, but I think the analogy between Applicative Functors
and middle school algebra is still surprisingly relevant and useful.

3

https://github.com/2016rshah/BlaTeX/blob/master/BlaTeX.hs#L100

	Factoring Review
	The Two Functor
	The Two Applicative
	Using the Two Applicative
	Using the Two Functor
	Conclusion
	Update

