
The Elixir Of Life

Rushi Shah

9 April 2016

Haskell makes the easy things hard
and the hard things easy.

I’m a big fan of functional programming, in case you haven’t noticed. Specifically, I’m
a big fan of Haskell, but I’ve been branching out a bit recently. I started branching out
because I realized that sometimes Haskell makes the easy things too hard. Don’t get me
wrong, it makes the hard things really easy, but it also makes the easy things hard. For
example, I had the time of my life whipping up a simple AI for Tic-Tac-Toe in Haskell but
when it came time to take input and output I had to ask Stack Overflow how to do it.

I also have not been a fan of Haskell’s package manager or Haskell’s popular back-end web
frameworks. They just seem too heavy for my taste. But I had an idea for a quick REST
API I really wanted to create and I’m loathe to do so in your run-of-the-mill JavaScript
Framework Of the WeekTM. So I decided to look into something new. Lucky for me, I
discovered the elixir of life that reinvigorated functional programming for me.

1 Functional Sinatra?

When I made Github Chart API, I had originally used Ruby on Rails, but eventually switched
to Sinatra (which I talked about in this blog post) because all I needed was to define a bit
of back-end code for each route. I wanted something similar for this project, but I wanted a
functional programming language.

2 The Idea

I guess I should explain what my idea was. It was partially inspired from the Github Chart
API I made earlier. I wanted an API that would let you just GET request your latest commit
message. I imagine people maybe having a banner or something on their personal website
where they would display it with some pretty styling. This would be especially helpful for
people who commit early and often and with interesting commit message. It also might
encourage more clear commit messages, which is always a plus.

1

https://github.com/2016rshah/Tic-Hack-Toe
http://stackoverflow.com/questions/32670948/take-input-from-user-until-tic-tac-toe-game-ends
https://github.com/2016rshah/githubchart-api
http://www.rshah.org/blog/posts/sinatra.pdf
https://github.com/2016rshah/githubchart-api
https://github.com/2016rshah/githubchart-api

3 Early Setbacks

Reading this blog post inspired me to actually get started on my idea (I had been thinking
about it for a while but hadn’t gotten around to it). That post led me to this one about
building a JSON REST API in Haskell. I started by trying to install Scotty with cabal, but
it failed to install after taking a ton of time to install dependencies (I’m pretty sure those
dependencies are still clogging up my computer). So after getting frustrated with that, I
tried to install Servant instead, but I met similar errors. Haskell prides itself on beautiful,
concise code and I wasn’t seeing any of that with web programming in Haskell. Everything
just felt like a hack together for people who were REALLY motivated to program web servers
in Haskell.

4 Enter Elixir

That’s not to say functional programming languages are bad as back-end languages. In fact,
Erlang is probably the most powerful language for stuff like that out there. But perhaps
people don’t find Erlang very pleasant to write (I’ve never actually used it myself). So Elixir
was created, which is (from what I’ve seen) basically Erlang that looks like Ruby. Elixir is
great because it’s fault-tolerant, concurrent, and really fast. Like really fast. Did I need a
concurrent language that could scale to billions and billions of users? Of course not. But it
was a pet-project anyways so I didn’t see any reason to experiment with new technologies
and branch out a bit.

5 Burn down the Phoenix

So I was a big fan of Elixir right off the bat, mainly because it was a compiled language that
makes heavy use of the REPL. Those are two of my favorite parts of Haskell, so I was happy.
Unfortunately, it isn’t a strongly typed language, otherwise I’m pretty sure Elixir would be
considered perfect in my mind. As I got started, I found the web framework Phoenix for
Elixir. But I remembered what had happened when I made Github Chart API: I had tried to
hammer in a nail with a jack-hammer. Yeah sure, it worked, but I really didn’t need all that
power, it was just overkill. Similarly, I didn’t need to use Phoenix. Instead, I just needed
a simple server, which is exactly what Plug was built for. Plus, I found this wonderful blog
post that outlined exactly how to start my project. To define a route, all I needed to do was
write this:

get "/hello" do

send_resp(conn, 200, "<h1>world</h1>")

end

(Looks mysteriously like Ruby and Sinatra, right?!)

2

http://taylor.fausak.me/2015/08/23/type-safe-web-services-in-haskell-with-servant/
http://taylor.fausak.me/2014/10/21/building-a-json-rest-api-in-haskell/
http://www.phoenixframework.org/
https://github.com/elixir-lang/plug#the-plug-router
http://blog.simonstrom.xyz/elixir-a-simple-server-with-plug/
http://blog.simonstrom.xyz/elixir-a-simple-server-with-plug/

6 Getting the most recent commit

So now for the actual logic of the program. How do you get the most recent commit from
the Github API? If there was an endpoint for that my program would be useless. But
unfortunately, there is not. I completely overestimated the problem. My initial solutions
were atrocious: I would get every single repo from a user, then get every single commit for
each of those repos, then sort the repos by their most recent commit, and then take the head
of that list and return the resulting most recent commit. Think about that for a moment.
If you had n repos, I would need to make n+1 API requests. That would

• Be extremely slow for the user

• Kill my rate limit

Then I realized that I was dumb and that Github provided parameters that would let me
sort a user’s repos by how recently they were pushed to. Then, I could do something similar
with the commits for that repo and I for a user with n repos I would still only need to make
2 API requests. The code I ended up with is:

def getLatestCommit(username) do

client = Tentacat.Client.new(%{access_token: Commit.Keys.github_key})

[repo | _] = Tentacat.Repositories.list_users(username, client, [sort: "pushed"])

repoName = Map.get repo, "name"

[commit | _] = Tentacat.Commits.list(username, repoName, client)

commit

end

Elegant, am I right?

7 Plain Text and JSON support

So originally I had the following route:

Send a plain-text response of just the message

get "/:name" do

message = Map.get (Map.get getLatestCommit(name), "commit"), "message"

conn

|> send_resp(200, message)

|> halt

end

But I realized that people would probably want the meta-information for their commit
information too. For example, I would personally make it a link with the href being a link
to the commit on github and the value of the tag the commit message. Luckily, Elixir’s data
strucure maps directly to JSON with a package called Poison, which I first heard about from
this blog post. So my second route could be:

3

https://developer.github.com/v3/repos/#list-user-repositories
http://www.jarredtrost.com/2015/05/30/getting-started-with-elixir-plug-routes/

Send JSON response

get "/json/:name" do

conn

|> put_resp_content_type("application/json")

|> send_resp(200, Poison.encode!(getLatestCommit(name)))

|> halt

end

8 Heroku

This buildpack made deploying to heroku painless, so I could offer a hosted version of the
app at comet.rshah.org.

9 Cross Origin Requests (CORs)

After I had done so, though, I ran into a problem. I wanted people to be able to make a
client-side request for their commit message and append it to their website even on a static
site with Javascript. After I deployed to Heroku and tried to test it out though, I realized
that I needed to enable Cross Origin Requests. Doing so was a synch, really just boiled
down to one line: plug PlugCors

10 Using it

So now it works! An example (unfortunately using JQuery) of a static site that embeds your
latest Github commit is just:

<html>

<head>

<script src="jquery.js"></script>

</head>

<body>

<script>

$.getJSON(’http://comet.rshah.org/json/2016rshah’, function(data) {

$("#commit").text(data.commit.message);

$("#commit").attr("href", data.html_url)$

});

</script>

</body>

</html>

4

https://github.com/HashNuke/heroku-buildpack-elixir-test
http://comet.rshah.org

11 Conclusion

So that’s simple enough to use, right? I had a ton of fun making it, and I’m glad that the
easy things don’t always have to be hard in functional programming, as long as you use the
right tools.

If you think Comet is neat, I would really appreciate it if you would check out the project
on github (and star it if you’re real!). If you decide to embed your own commit somewhere
using Comet, let me know on Twitter or something! And to do so all you have to do is GET
request

comet.rshah.org/json/<YOUR-GITHUB-USERNAME>

5

https://github.com/2016rshah/comet
https://github.com/2016rshah/comet

	Functional Sinatra?
	The Idea
	Early Setbacks
	Enter Elixir
	Burn down the Phoenix
	Getting the most recent commit
	Plain Text and JSON support
	Heroku
	Cross Origin Requests (CORs)
	Using it
	Conclusion

