
A Beginner’s Haskell Workflow in Emacs

Rushi Shah

5 December 2015

What kind of programmer would I be if I didn’t join the Vim vs. Emacs Crusades? Well
I’m dabbling in Haskell, so emacs was the natural choice, but I’m honestly not invested
enough in either to speak to their strengths or weaknesses.

However, regardless of your choice, it is a daunting task to use either for the first time.
Especially when learning a new language along with it. So hopefully this post will demystify
how to use Haskell with Emacs.

1 Setup

Honestly, I set up emacs and haskell and all a while ago, roughly following this guide. That
in itself was an entire adventure, that I’m not even gonna try to go through. All I will say
is good luck, you might will need it.

2 Opening a file and a Haskell REPL

Aight, so down to business. First of all, in your plain old terminal, navigate to the haskell
file you’re about to open. Let’s assume it’s called Paper.hs.

Start out by doing emacs Paper.hs to open the file. Make a few edits or whatever until
you’re ready to start playing with functions in GHCi. When you are, press C-x-s or C-x

C-s to save the file.

1

https://github.com/serras/emacs-haskell-tutorial/blob/master/tutorial.md
https://github.com/2016rshah/adventofcode/blob/master/day2/Paper.hs


Then press C-c C-l to start up an interactive Haskell REPL. You will be prompted
“Start a new project named “haskell”? (y or n)”, so obviously answer with y. Press enter
twice after that for the two directories (I’m honestly not sure what they are both for) and
you will be greeted with a nice split screen between your file and your interactive shell.

2



3 Terminal to file and back again

Okay great, you’ve tested your functions and all, but you made a typo! You need to go fix
it in the file. But how do you get there? C-x o (that’s an o like octopus) will switch you
back and forth from the top and bottom buffers. When you are in the Haskell file, you can
press C-c C-l to load in the file. Or if you’re already in the REPL and don’t want to switch
over to the file to compile it, you can just type in :l <FILE NAME> to load it like normal in
GHCi.

4 Opening more files

Wait, you vaugely remember a sliver of syntax that you used in another file yesterday, but
you want to go check just to make sure. Navigate to your haskell file if you’re not already
there. Then do C-x-f or C-x C-f and find the path to the file you want to open. When
you press enter, it will overlay on the file you just had open. For example, you want to go
to Floor.hs. You found the syntax, its inp <- readFile "input.txt".

5 Copy and Paste

But how are you going to remember it? By the time you switch back you might remember it
as getFile or readContents or any other permutation of the wrong words. You need copy and
paste. So first you need to select the text you want to copy. To do so, go to the beginning
of what you need and press C-@ (which is Ctrl, Shift, and 2 pressed all at the same time on
my keyboard). Then move your cursor to the end of what you need. Press M-w to copy or
C-w to cut. Just press C-y to paste.

3

https://github.com/2016rshah/adventofcode/blob/master/day2/Paper.hs


6 Switching buffers

But you don’t want to paste here! You want to paste in the other file, how do you get back
to it? No need to open the file again with C-c C-f because the buffer is already open. To
switch back to the previous buffer, do C-x b and you can probably press enter because the
default will be what you want. Did you accidentally type C-x C-b and open a new buffer
that you don’t want with a list of all the buffers? Switch over to it with C-x o and kill it
by pressing C-x k and pressing enter.

7 Git

Okay so now you’re all set up, you’ve solved your puzzle, but you want to push your code to
github! If you press C-x C-c to exit, you’ll have to open all your buffers again and it’ll be
a big mess. So why not open up a shell within emacs over top of your Haskell REPL where
you can type in your git commands? Navigate to your REPL and press M-x, then type in
shell. Do your business with all the git commands you know and love to commit/push
your code. When your heart is content, you can just press C-x k to kill the shell buffer and
continue on your merry way.

8 Other useful shortcuts

• C-n to go to the next line

• C-p to go to the previous line

• C-f to go forward one character

4



• C-b to go backwards one character

• C-g to cancel any commands that are half-written when you realize you screwed up

• C-x u to undo what you just did

• M-> to jump to the end of the buffer

• M-p to get the previous command entered into the REPL. Similar to when you’re in
your terminal and you press the up arrow.

• M-x comment-region after code is highlighted to comment it, M-x uncomment-region

to uncomment.

• C-e to jump to the end of the line

• C-a to jump to the beginning of the line

• M-m to jump to the beginning of the line of code (skip the indentation)

• M-g g to jump to a specific line number

• C-x z to redo the last command, and z to redo it again repeatedly (example: use after
C-x ^)

• C-x ^ to expand the size of the split screen that you’re on by one line

5


	Setup
	Opening a file and a Haskell REPL
	Terminal to file and back again
	Opening more files
	Copy and Paste
	Switching buffers
	Git
	Other useful shortcuts

